
Math 113 Exam 3 Practice

Exam 4 will cover 11.3-11.11, 10.1 and 10.2. Note that even though 11.3 was tested in exam 3, questions from that
sections may also be on this exam. For practice problems on 11.3, refer to the last review.

This sheet has three sections. The first section will remind you about techniques and formulas that you should
know. The second gives a number of practice questions for you to work on. The third section give the answers of
the questions in section 2.

Review

Tests for Convergence

We learned about the following tests for convergence:

Divergence Test If an !→ 0 then
∑

an diverges. This is an excellent test to start with because the limit is often

easy to calculate. Keep in mind, however, if the limit is 0, then the Divergence test tells you nothing. You
must try some other test.

p series If you recognize a series as a p series, ∑ 1

np

then you can use the fact that a p series converges when (and only when) p > 1.

Geometric series We discussed this in the last subsection.

Comparison Test To use the comparison test, we need to have a large group of test series available. We also need
to know if these test series converge or not. The most common test series for the comparison test are the p
series and the geometric series. If the series ”acts like” a p series, or ”acts like” a geometric series, then you
may wish to use the comparison test. Remember, if 0 ≤ an ≤ bn and

•
∑

bn converges, then
∑

an converges.

•
∑

an diverges, then
∑

bn diverges.

Limit Comparison Test This test works well for the type of problems that also work with the comparison test,
but is somewhat easier. You still need the test series, but you don’t need to work to make the terms of the
series greater than or less than some known series. You only need to check the limit

lim
n→∞

an
bn

.

If it is finite and positive, then both series converge or both diverge. Since you already know about one of
them, you then know about the other.

Integral Test If we are trying to determine whether
∑

an converges, and there is a function f(x) with f(n) = an,
then the sum converges iff ∫ ∞

a
f(x) dx converges.

(We assume that both the series {an} and f(x) are positive.) So the integral test is handy if the associated
function can be integrated without too much difficulty.

Alternating Series Test To use the alternating series test, you need to verify three things: The series is alternating.
(This can usually be done by inspection). The terms of the series converge to 0. (Hopefully you did this when
you applied the Divergence test.) Finally, the terms of the absolute values are decreasing. The second statement
does not necessarily imply the third. If this is true, then the alternating series test tells us the series converges.

Ratio Test If

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = L,

then the series is absolutely convergent if L < 1 and divergent if L > 1. If L = 1, the test fails. This test works
really well when a factorial is present in an.
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Root Test If
lim

n→∞
n
√
|an| = L,

then the series is absolutely convergent if L < 1 and divergent if L > 1. If L = 1, the test fails. This test works
really well when there are powers of n in an.

Remember, the Integral test and the comparison tests only work when the series has non-negative terms. If you have
a series where the terms are both positive and negative, then you must be able to say whether the series converges
absolutely, converges conditionally, or diverges. It is one of these. These are mutually exclusive conditions.

Estimating the tail

In an infinite series, the tail is a term usually used to indicate the “last” part of the series. For example, if we wish
to approximate the sum of the following convergent series,

∞∑

n=0

1

(2n+ 1)3
,

then we can write it as
k∑

n=0

1

(2n+ 1)3
+

∞∑

n=k+1

1

(2n+ 1)3

The part that is still an infinite sum is called the tail. The sum of the tail is called the error of our approximation.
If we can test convergence of a series by the integral test, then there is an easy way to find an estimate of the tail:
Assume f(x) is defined on [b,∞) for some b, and f(n) = an. Then

∫ ∞

k+1
f(x) dx ≤

∞∑

n=k+1

≤
∫ ∞

k
f(x) dx.

For example suppose that we sum the first 5 terms of the above series:

∞∑

n=0

1

(2n+ 1)3
≈

4∑

n=0

1

(2n+ 1)3

= 1 +
1

27
+

1

125
+

1

343
+

1

729
= 1.049324231

How close is this? We find that ∫ ∞

5

1

(2x+ 1)3
dx =

1

484
= 0.002066115702,

and ∫ ∞

4

1

(2x+ 1)3
dx =

1

324
= 0.003086419753.

Thus, the error is between these two numbers.
If we can use the comparison test to find convergence, then we can sometimes still use the above formula, but

only for upper bounds. For example, if I am trying to estimate

∞∑

n=k+1

n− 1

n3 + 1
,

the fact that
n− 1

n3 + 1
<

1

n2

means that
∞∑

n=k+1

n− 1

n3 + 1
<

∫ ∞

k

1

x2
dx.
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Power Series

Recall that a power series is a series of the form

∞∑

n=0

an(x− c)n.

The value c is called the center of the power series, and the values an are called the coefficients.
A power series is a way to represent a function. However, the power series may have a different domain than the

function does. To find the domain of the power series, (called the interval of convergence), we do the following:

1. Apply the ratio or root test to the power series. If the limit is 0, the power series converges everywhere and
the radius of convergence is ∞. If the limit is ∞, the power series converges only at the center, and the radius
of convergence is 0. Otherwise, set the limit to be less than 1, and rework the inequality so it says |x− c| < R.
R is the radius of convergence.

2. The power series is now guaranteed to converge absolutely on (c − R, c + R), and diverge on (−∞, c − R) ∪
(c+R,∞). We now test the power series at the endpoints. Plug the endpoints c−R and c+R into the power
series and use one of the other 5 tests (not Ratio, not Root) to determine whether they converge. State the
interval of convergence using parentheses to indicate the power series does not converge at an endpoint, and a
bracket to indicate it does.

Finding sums of series

Finding a power series that represents a specific function is the next topic. The first one we learned was the geometric
series:

1

1− x
=

∞∑

n=0

xn iff x ∈ (−1, 1).

We then found the sum of several series by differentiating, integrating, multiplying by x, etc.
The Taylor series of a function is

∞∑

n=0

f (n)(c)

n!
(x− c)n

and can also be used to find the power series of a function.
Notice that the interval of convergence of these series is still very important. We need to know when we can trust

them.
In addition to the geometric series above, the following Maclaurin series (with interval of convergence) are

important:

• tan−1 x =
∞∑

n=0

(−1)nx2n+1

2n+ 1
, [−1, 1]

• ln(1 + x) =
∞∑

n=0

(−1)nxn+1

n+ 1
, (−1, 1]

• ex =
∞∑

n=0

xn

n!
, (−∞,∞)

• (1 + x)r =
∞∑

n=0

(
r

n

)
xn, (−1, 1) where the binomial

coefficients are
(r
n

)
= r(r−1)···(r−n+1)

n!

• sinx =
∞∑

n=0

(−1)nx2n+1

(2n+ 1)!
, (−∞,∞)

• cosx =
∞∑

n=0

(−1)nx2n

(2n)!
, (−∞,∞)

• sinhx =
∞∑

n=0

x2n+1

(2n+ 1)!
, (−∞,∞)

• coshx =
∞∑

n=0

x2n

(2n)!
, (−∞,∞)

If you need to construct a Maclaurin series of a function and some of the above functions are included, it is almost
always easier to manipulate the Maclaurin series instead of constructing the series by scratch.

Approximating sums of series

In addition to finding whether sums of series converge or not, we also were able to find approximations to the error.
There were 3 basic approximations to the error given by the Integral test, Alternating Series test, and the Taylor
Series.
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1. If
∑

ak is convergent with sum s and f(k) = ak where f is a continuous, positive, and decreasing function for

x ≥ n, then the remainder Rn = s− sn =
∞∑

k=n+1
ak satisfies the inequality

∫ ∞

n+1
f(x) dx ≤ Rn ≤

∫ ∞

n
f(x) dx

2. If {ak} is a positive decreasing sequence with a limit of 0, then
∑

(−1)kak is convergent with sum s and the

remainder Rn = s− sn =
∞∑

k=n+1
(−1)kak satisfies the inequality

|Rn| < an+1

3. Taylor’s Inequality: If Tn(x) =
n∑

k=0

f(k)(c)
k! (x − c)k is the nth Taylor polynomial of f(x) centered at c, then

the remainder Rn(x) = f(x)− Tn(x) satisfies the inequality

|Rn(x)| ≤
M

(n+ 1)!
|x− c|n+1

on the interval where |f (n+1)(x)| < M .

We use this information, when applicable, to find maximum errors when approximating a function by a Taylor
polynomial as well.

Parametric Curves

We learned how to define curves parametrically. That is, we learned how to describe a curve given by an equation

H(x, y) = 0

in terms of a pair of functions
x = f(t), y = g(t).

You will need to be able to do the following:

(a) Graph a curve from it’s parametric equations.

(b) Recognize the curve of a set of parametric equations.

(c) Eliminate the parameter of the parametric equations to find an equation in x and y describing the curve.

(d) Construct a set of parametric equations for a curve written in cartesian coordinates.

10.2 Calculus of Parametric Equations

In the discussion below, we will assume that a curve can be described parametrically by

x = f(t),

y = g(t).

Slopes
dy

dx
=

dy
dt
dx
dt

=
g′(t)

f ′(t)
.

This gives a formula for the slope as a function of parameter.

d2y

dx2
=

d
dt

(
dy
dx

)

dx
dt

Arclength

s =

∫ t1

t0

√
(f ′(x))2 + (g′(x))2 dx
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Surface Area
Rotated about the x axis:

S =

∫ t1

t0

2πf(x)
√

(f ′(x))2 + (g′(x))2 dx

Rotated about the y axis:

S =

∫ t1

t0

2πg(x)
√
(f ′(x))2 + (g′(x))2 dx

Area under the curve
Area between the curve and the x axis:

A =

∫ t1

t0

y dx =

∫ t1

t0

g(t)f ′(t) dt

Area between the curve and the y axis:

A =

∫ t1

t0

x dy =

∫ t1

t0

f(t)g′(t) dt

Questions

Try to study the review notes and memorize any relevant equations before trying to work these equations. If you
cannot solve a problem without the book or notes, you will not be able to solve that problem on the exam.

For problems 1 to 4, determine whether the series
converges or diverges. State the test you used.

1.
∞∑

n=1

n+ 3n

6n

2.
∞∑

n=0

n4 + 7n+ 8

n5 + 7n4 + 13n2 + 19n+ 23

3.
∞∑

n=1

ln(n)

n

4.
∞∑

n=1

cos2 n

n2 + 1

5. Show that 2
5 is an upper bound on the error of

∞∑
n=1

1

n4 + 7
if the sum is approximated by the first

two terms.

6. Approximate the sum of

∞∑

n=1

n+ 1

n3

by summing the first 10 terms. Find a bound on
the error of your approximation.

For problems 7 through 12, determine
whether the series is absolutely convergent,
conditionally convergent, or divergent.

7.
∞∑

n=2

(−1)n

n lnn

8.
∞∑

n=1

(−1)n
nn

n!

9.
∞∑

n=1

cos(πn)

2n+ 1

10.
∞∑

n=1

(−1)n

n(n+ 1)

11.
∞∑

n=1

(−1)n(lnn)2

n

12.
∞∑

n=1

(−1)n
n√

n5 + 3

13. Show that 1
24 is an upper bound on the error of

∞∑
n=1

1

n4 + 7
if the sum is approximated by the first

two terms.

14. Suppose the power series
∞∑

n=2

an(x+1)n has a radius

of convergence R = 5. List all possible intervals of
convergence.

15. Find the radius and interval of convergence of
∞∑

n=1

(x− 1)n

nn

16. Find the radius and interval of convergence of
∞∑

n=1

(−4)n(x− 2)n

3 + 2n

17. Find the radius and interval of convergence of
∞∑

n=1

xn

3n

18. Find the radius and interval of convergence of
∞∑

n=1

n2nxn

n3 − 1
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19. Find the radius and interval of convergence of
∞∑

n=1

n!xn

100n

20. Find a power series representation in powers of x
for the function

f(x) =
1

3 + x

with interval of convergence.

21. Find a power series representation in powers of
(x − 1) for the function f(x) = 1

1+x and give the
interval of convergence.

22. Find a power series representation in powers of
(x− 1) for ln(1 + x).

23. What is the power series representation of x2

(1−x)2 ?

24. Find the Maclaurin series for f(x) = ln(2−x) from
the definition of a Maclaurin series. Find the radius
of convergence.

25. Find a Taylor series for f(x) = cos(πx) centered at
x = 1. Prove that the series you find represents
cos(πx) for all x.

26. Use multiplication to find the first 4 terms of the
Maclaurin series for f(x) = ex cosh(2x).

27. Use division to find the first 3 terms of the Maclau-
rin series for g(x) = x2

cos x−1 .

28. Use the power series of 1
3√1+x

to estimate 1
3√1.1

cor-

rect to the nearest 0.0001. Justify that the error is
less than 0.0001 using the Alternating Series Esti-
mation Theory or Taylor’s Inequality.

29. Find the sum:

(a)
∞∑

n=0

(−1)n

(
√
3)2n+1(2n+1)

(b)
∞∑

n=2

3
2nn!

(c)
∞∑

n=0

(−1)nx2n

(2n+1)!

(d) 4
2! +

8
3! +

16
4! +

32
5! + ....

30. Find the Taylor polynomial T3(x) for the function
f(x) = arcsinx, at a = 0.

31. Approximate f by a Taylor polynomial with degree
n at the number a. And use Taylor’s Inequal-
ity to estimate the accuracy of the approximation
f(x) ≈ Tn(x) when x lies in the given interval.
(a) f(x) = 3

√
x, a = 8, n = 2, 7 ≤ x ≤ 9

(b) f(x) = x sinx, a = 0, n = 4, −1 ≤ x ≤ 1

32. Find the Taylor polynomial T3(x) for the function
f(x) = cosx at the number a = π/2. And use it to
estimate cos 800 correct to five decimal places.

33. A car is moving with speed 20m/s and acceleration
2m/s2 at a given instant. Using a second-degree
Taylor polynomial, estimate how far the car moves
in the next second. Would it be reasonable to use
this polynomial to estimate distance traveled during
the next minute?

34. Show that Tn and f have the same derivatives at a
up to order n.

In problems 35 to 37, graph the parametric curve.

35. x(t) = cos t, y(t) = sin(2t).

36. x(t) = e2t, y(t) = ln(t) + 1.

37. x(t) =
√
t, y(t) = t3/2 − 2t. In problems 38 to 40,

eliminate the parameter to find a Cartesian equa-
tion of the curve.

38. x(t) = cos t, y(t) = sin(2t).

39. x(t) = e2t, y(t) = ln(t) + 1.

40. x(t) =
√
t, y(t) = t3/2 − 2t. In problems 41 to 42,

find parametric equations for the curve

41. x2 + y2

4 = 1

42. y = x2 + 2x− 1

43. Find an equation of the tangent to the curve at the
given point.

x = cos(3θ)+sin(2θ), y = sin(3θ)+cos(2θ); θ = 0

44. For which values of t is the tangent to curve hori-
zontal or vertical? Determine the concavity of the
curve.

x = t2 − t− 1, y = 2t3 − 6t− 1

45. Find the area enclosed by the curve x = t2−2t, y =√
t and the y-axis.

46. Find the area of one quarter of the ellipse described
by x = 5 sin(t), y = 2 cos(t).

47. Find the exact length of the curve: x = t
1+t , y =

ln(1 + t); 0 ≤ t ≤ 2.

48. Find the exact length of the curve: x = et+e−t, y =
5− 2t; 0 ≤ t ≤ 3.

49. Find the exact surface area by rotating the curve
about the x-axis: x = t3, y = t2; 0 ≤ t ≤ 1.
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Answers

1. n+3n

6n < 3n+3n

6n = 2( 12 )
n and

∑
2( 12 )

n converges (ge-

ometric r = 1
2 ). Thus

∞∑
n=1

n+3n

6n converges by Com-

parison Test.

2. lim
n→∞

n4+7n+8
n5+7n4+13n2+19n+23

1
n

= 1 and
∑ 1

n diverges.

Hence
∞∑

n=0

n4+7n+8
n5+7n4+13n2+19n+23 diverges by Limit

Comparison Test.

3. lnn
n > 1

n . Thus
∞∑

n=1

ln(n)
n diverges by Comparison

Test.

4. cos2 n
n2+1 < 1

n2+1 < 1
n2 and

∑ 1
n2 converges (p-series ).

Thus
∞∑

n=1

cos2 n
n2+1 converges by Comparison Test.

5. Since 1
n4+7 < 1

n4 it is sufficient to show that 2
5 is a

bound on the sum
∞∑

n=3

1
n4 . Then R2 ≤

∞∫

2

1
x4 dx = 1

24 .

6.
∑10

n=1
n+1
n3 = 2.747299717. Note that

∫ ∞

10

x+ 1

x3
dx = .105,

∫ ∞

11

x+ 1

x3
dx = 0.09504132231.

Thus, the sum lies in the interval
(2.842341039, 2.852299717).

7. Converges by the Alternating Series test. By the
Integral Test, it does not converge absolutely. So it
converges conditionally.

8. Diverges by the Test for Divergence.

9. Converges by the Alternating Series test. By the
Limit Comparison test (with bn = 1

n ), it does not
converge absolutely. So it converges conditionally.

10. Converges absolutely by the Limit Comparison test
(with bn = 1

n2 ).

11. Converges by the Alternating Series test (Use
L’Hôpital’s rule). By the Integral Test, it does not
converge absolutely. So it converges conditionally.

12. Converges absolutely by the Limit Comparison test
(with bn = 1

n3/2 ).

13. R2 =
∞∑

n=3

1
n4+7 ≤

∞∑
n=3

1
n4 ≤

∫ ∞

2

1
x4 dx = 1

24

14. (-6,4), (-6,4], [-6,4), [-6,4]

15.
∣∣∣an+1

an

∣∣∣ → 0 for all x: R = ∞, I = (−∞,∞)

16.
∣∣∣an+1

an

∣∣∣ → 4|x− 2| < 1: R = 1
4 , I = ( 74 ,

9
4 ]

17.
∣∣∣an+1

an

∣∣∣ → |x|
3 < 1: R = 3, I = (−3, 3)

18.
∣∣∣an+1

an

∣∣∣ → 2|x| < 1: R = 1
2 , I = [− 1

2 ,
1
2 ]

19.
∣∣∣an+1

an

∣∣∣ → ∞ for all x: R = 0, I = {0}

20. 1
3+x = 1

3

( 1

1− (−x
3 )

)
= 1

3

∞∑
n=0

(
−x

3

)n

=
∞∑

n=0

(−1)nxn

3n+1 for x ∈ (−3, 3)

21. 1
1+x = 1

2+(x−1) =
1
2 · 1

1−
(

−(x−1)
2

)

= 1
2

∞∑
n=0

(−1)n

2n (x− 1)n for x ∈ (−1, 3)

22. Integrate the previous solution to get

ln (1 + x) = C+ 1
2

∞∑
n=0

(−1)n

2n(n+1) (x−1)n+1 : (C = ln 2)

23. x2

(1−x)2 = x2 d
dx

(
1

1−x

)
= x2 d

dx

( ∞∑
n=0

xn

)

= x2
∞∑

n=1
nxn−1 =

∞∑
n=1

nxn+1

24. ln(2− x) =
∞∑

n=0

f(n)(0)
n! xn = ln 2+

∞∑
n=1

−xn

2nn : (R = 2)

25. cos(πx) =
∞∑

n=0

f(n)(1)(x−1)n

n! =
∞∑

n=0

(−1)n+1π2n(x−1)2n

(2n)!

|Rn(x)| ≤ πn+1|x−1|n+1

(n+1)! → 0 for all x

26. ex cosh 2x = (1+x+ x2

2! + · · · . . .)(1+ (2x)2

2! + · · · ) =
1 + x+ 5

2x
2 + 13

6 x3 + · · ·

27. x2

cos x−1 = x2

− x2
2! +

x4
4! −···

= −2− x2

6 − x4

120 + · · ·

28. 1
3√1+x

= 1− x
3 + 2x2

9 − 14x3

81 + · · ·
Thus, 1

3√1.1
≈ 1 − 1

30 + 1
450 . Since the series is al-

ternating the error for this sum is less than the size
of the next term, which is 7

40500 , which is less than
0.001.

29. Find the sum:

(a)
∞∑

n=0

(−1)n

(
√
3)2n+1(2n+1)

= tan−1( 1√
3
) = π

6

(b)
∞∑

n=0

3
2nn! = 3

√
e

(c)
∞∑

n=0

(−1)nx2n

(2n+1)! = sin x
x

(d) 4
2! +

8
3! +

16
4! +

32
5! + .... = e2 − 3

30. T3(x) = x+ 1
6x

3

31. (a) 2 + x−8
12 − (x−8)2

288 : |R2| ≤ f(3)(7)·13
3! ≈ 0.00034

(b) x2 − x4

6 : |R4| ≤ f(5)(1)·15
5! ≈ 0.0396

32. −(x− π
2 ) +

1
6 (x− π

2 )
2 : cos 80◦ = cos 4π

9 ≈ 0.174

33. T2(x) = s(0) + s′(0)x+ s′′(0)
2 x2 = 20x+ x2

T2(1) = 21 m: No
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34. Prove by mathematical induction or directly con-
sider the kth derivative of the polynomial Tn.

35.

36.

37.

38. y = 2x
√
1− x2

39. y = ln(ln(x))− ln(2) + 1

40. y = x3 − 2x2

41. x = cos(t), y = 2 sin(t)

42. x = t, y = t2 + 2t− 1

43. y = 3
2x− 1

2

44. vertical at t = 1/2, horizontal at ±1, concave up
when t > 1/2, concave down when t < 1/2.

45. 8
√
2

15

46. 5π
2

47. −
√
10/3 + ln(3 +

√
10) +

√
2− ln(1 +

√
2)

48. e3 − e−3

49. 2
1215π(247

√
13 + 64).
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